Andrea Allievi 02/01/2014
Security Researcher

Expiro: Anatomy of a new 64 bit file Infector

In these last days of December, | have deeply analysed the new Expiro virus, that claims to be the first
64 bit file infector in the wild. This is something new because, till now, all known file infectors target
only 32 bit executables. Expiro is instead able to hit 64 bit systems, as well as 32 bit ones.

In this analysis paper we are going to describe the multi-architecture infection process (starting from a
64 bit infected file).

Expiro Infected file - a quick glance

An Expiro forged file does not bring anything new. Expiro adds a section named “.vmpX” (where X is a
number from 0 to 9), large about 512 KB, at the end of target PE file, and substitutes about 1248 bytes
of code in its entry point. This code has the aim to decrypt Expiro encrypted bytes located in the last
section. It stores decrypted bytes in the end of section without exploiting memory allocation APIs.
Expiro section indeed has a Virtual size much bigger than its real raw size. The Windows loader, when
encounters something like this, creates a section object bigger as PE section virtual size, and maps actual
content only in the first part of it. The ending part of section is empty (filled with zeroes), and it is
exploited by the virus to write decrypted code. Expiro PE section is divided in three blocks: the first
block contains original PE entry point code; the second contains the current architecture encrypted PE;
and finally the last block embed another encrypted PE that contains code for the other architecture (x86
versus AMDG64). The first decryption algorithm is quite obfuscated but easy to spot out. Entry point
infected code knows the real size of Expiro section: it XOR entire section bytes six times with a key (0x21
in our dropper). A clever reader certainly knows that the XOR process repeated a pair number of times
yields the same original results. Indeed the last time the Expiro EP code XOR all bytes with the same key
increased by one. This fact is showed in the following obfuscated code snippets:

@ ea 53

FirstXorDecryptBlock:

mov [rbp+curByte], r11b ; Store current byte

movzx r11d, [rbp+curByte]

mov eax, [rbp+iDecryptPhase]

mov ecx, 6

mov eax, eax

mov edx, OAAAAAAABH

mul edx ; if (8 < "iDecryptPhase" < 6) -> EAX = 08
shy edx, 2 ; else if ("iDecryptPhase™ == 6) -> EAX = 1
mov eax, edx 5 EAX = High DWORD of multiply

mov [rbp+curXorOffset], eax

mov r108d, [rbp+firstXorKey] ; 0x8D93C7221

movsxd 9, [rbp+curXorOffset]

add r9d, r16d 5 R9 = Current decryption Key

movzx r16d, r9b ; Last byte of XOR key

Xor r11d, r16d ; Xor loaded byte with key

Figure 1. Code snipped of obfuscated simple Expiro decryption cycle

Finally, it copies all the decrypted PE sections one by one in the second empty part of target file PE
section, performing needed relocations and fixups. Execution control is then returned to “ExpiroMain”
function now located in the second part of Expiro infected section. ExpiroMain job is quite simple: first,
it searches the Base address of its module (starting from ExpiroThread procedure and walking

backwards) and of Kernel32 library, gets the infected entry point code size, and then it spawns a new
thread (we will call this new thread the main Expiro thread). Finally it copies original Entry point clean
bytes stored in the beginning of Expiro section to their real location and jump to original instructions
now located in the right place. Infected file execution proceeds as normal. The entire infection logic is
executed from now on by spawned thread.

Expiro main thread

Main thread spawned by Expiro code begins its execution resolving its internal Import address table.
IAT resolution exploits a classical GetProcAddress / LoadLibrary method, obfuscated with the usage of
encrypted string for its needed API functions. String encryption algorithm is quite simple:

// Decrypt an expiro string
LPSTR DecryptExpiroString(STR_STRUCT * pStrStruct) {

const LPSTR encMap = // Encryption map
"r@YE<@kPR3z0_hhyLKoLzXTumecicQz>177";

DWORD mapSize = strlen(encMap); // Encryption map size

BYTE curKey = pStrStruct->xorKey; // Current xor Key

for (int i = 0; 1 < (int)pStrStruct->size; i++) {
CHAR chr = pStrStruct->encStr[i];

DWORD mapPos = (i + 3) % mapSize; // Get current position in Map
chr = (chr ~ curKey) ™ encMap[mapPos]; // Decrypt it ...
pStrStruct->encStr[i] = chr; // and store new value

}

return (LPSTR)pStrStruct->encStr;
}

where STR_STRUCT represent an encrypted string composed as following: 1 WORD String size + 1
BYTE Xor key + encrypted string.

Expiro thread figures out many functions addresses of the following modules: Kernel32, Advapi32,
Ole32, User32, Sfc, Pstorec, Msvcrt, Crypt32, Oleaut32, Shell32.
“SearchExpiroNames” procedure, as the name implies, searches for some predefined names:

- Terms “SERVICE” or “SYSTEM” included in current user name

- Current user name located in target computer name

- Terms “ervice”, “systemprofile” included in one of each environment variable
Whether the routine has found one condition above, it probably means that the infected file is running
as a System service, and, if so, another different infection routine is used. We will talk about the latter
routine afterwards...
Expiro thread code now tries to open one of Expiro Setup mutex (named “kkq-vx_mtxX”, where X is an
integer value ranging from 28 to 100). If it succeed, setup procedure is suddenly terminated (indeed
another infected file is running and performing infection process). Otherwise,
“AdjustMyPrivilegesAndCreateSecDesc” routine opens the current process token, gets information,
obtains its owner and then creates a global Security descriptor with a null DACL, null SACL and infected
process user as owner. It then creates and acquires setup mutex and creates an hidden window (class
name "kkg-vx"). Finally, infection process begins...

Service infection process

Infection process starts targeting system services. Before investigate the proper routines, we have to
summarize here the memory situation of running infected PE. Its memory layout at this stage is the
following:

PE Header

Section header

Original PE Entry point code Ox4f5

Expiro .vmpX Section S Current arch. Expiro Pe

Ox49300 + 0x4f5

Other arch. encrypted Pe

0x7c400 + 0x4f5

Figure 2. Memory layout of a running Expiro infected process

As the reader can see from the picture above, at this stage there are 2 Expiro modules stored in process
decrypted section memory:

- First module is current execution module that is built for current host PE architecture (64 bit in

our analysed sample)

- Second module is encrypted and targets executable files built for classical 32 bit architecture.
As we will see in a while, Expiro in this way can hit both 32 bit and 64 bit PE files...
Main thread decrypt second in-memory PE, obtain the entry point code size for other architecture
modules, and then calls “InfectServices” routine.
The latter routine starts the actual system Services infection: it begins verifying the host Operating
system ("ExpiroVerifyOs" procedure succeeds if host OS platform is Nt and major version is above or
equal to Xp). Then it enumerates all installed services exploiting “EnumServicesStatus” APl and finally
calls InfectService procedure for each found service.
InfectService routine opens target service, obtains its configuration and analyses its binary path: if
service path doesn’t end with “.exe” extension the routine exits, otherwise “InfectFileStub” routine is
called to perform actual PE file infection. If service is a DIl library living in the Windows service host
process, the latter process will be infected (and not the target service library) and a flag is raised. Expiro
has an internal list of most popular AVs services. If the infected service is an AV one, it is marked as
DISABLED.
Finally, if the target service is not interactive, is marked as interactive. All modified are applied exploiting
ChangeServiceConfig API.

Expiro detailed file infection process
Expiro actual file infection is launched by a stub routine: “InfectFileStub”. This procedure analyses path,
trimming beginning and end chars if needed, performs some name filtering and then check OS: if the
host Operating system is Xp or less, it loads “SFC.dIl” library with the aim to deal with system-protected
files. “SfclsFileProtected” APl is exploited to determine if target file is protected, and, if so, a call to the
function exported at ordinal 5 by Sfc library is made. The protection to target file in this way is disabled.
Now execution control is transferred to “InfectFile” main infection routine.
The actual infection process is completely implemented in this large function, and is divided in 4 parts:

- Initialization block

- Analysis block

- Pre-infection block

- Infection block

Initialization block

The initialization block begins with the allocation of 2 global buffers (one for 32 bit architecture and one
for 64 bit one) of the same size (Expiro 2 Pe modules + 64 Kbytes for padding and Entry Point code).
Target file is opened in a clever manner: if “CreateFile” API fails, “ApplyExpiroSdToFile” function applies
the Security descriptor initialized above by main thread, to target file, and then retries to open it. The 2
global buffers are prepared as shown below:

0 0x2CD: 0x32A00 +0x2CD! Expiro Section Size +i OxFFFF

32 bit original™: :
1 g i 32bit Expiro PEmodule 64 bit Expiro PE module
EPcode :
0 Ox4F5§ Ox=9AOO+Gx-=FS§ Expiro Section Size -é{}xFFFF
64 bit original ™ :
2 8 ; 64 bit Expiro PE module ¢ 32bit Expiro PE module
EP code i :

* Original Entry point code is filled afterwards

Figure 3. Expiro pre-infection buffers layout

The target file size is obtained, a buffer large as original file size and new Expiro section is allocated.
Expiro reads entire file and stores it in the beginning of file buffer content. Now file is pre-analysed:
- If target file architecture is a standard 32 bit, sets first buffer as intermediate, and 0x2CD as Entry
point code size
- Otherwise, if target architecture is 64 bit, sets second buffer as intermediate, and 0x4F5 as Entry
point code size
Now Expiro code analyses the PE header of target file, with the aim to check whether is not already
infected. 3 attributes of Optional header are parsed: If major image version equals to 0xD, major linker
version equals to 9 (or 8) and last 4 bits of TimeDateStamp are set to 0, the procedure suddenly exits
(the target file is already infected).

Analysis Block

Analysis on Pe header proceeds: Expiro code obtains the target file Import address table RVA, entry
point address and some other data. A basilar check is made: if the IAT is located between Entry point
and new EP infected code block (size 0x2CD or 0x4F5 bytes) the procedure exits. The same is done for
Entry point code size: if there is less bytes available than the calculated infected EP code size, the
procedure exits. Expiro takes care of an eventual Bound Directory and calculates the new PE header size
with the following formula:

newPeHdr = BoundImportDir.Size + IMAGE FIRST_SECTION(pNtHdr) +
((numSect+1) * sizeofF(IMAGE_SECTION_HEADER))

As the reader certainly already knows, bound import directory usually stores its data immediately after
section header (see http://msdn.microsoft.com/en-us/magazine/cc301808.aspx, “Binding” section). A
good file infector MUST take this fact in consideration.
Infection code now analyses each target PE sections. For each section:
1. Calculates END Raw address (Raw Address + Raw Size) and END RVA (Section RVA + Virtual Size)
2. Based on previous results, calculates the biggest section end RVA / end Raw Address
The debug directory and the Security directory are now processed: for each debug entry, Expiro checks
its pointer to RAW data. If Raw data is located after last section, Expiro accounts it and stores the debug

4

entry data size in a local variable. If the security directory is present and NOT located at the end of PE,
exits from procedure; otherwise it sets security directory size and pointer to 0. In this way the digital
signature (now made invalid) is trimmed down. Last steps of the analysis block are related to IAT: if IAT
doesn’t include “Kernel32.dlI” module, the procedure stops. Finally, IMAGE_FILE_RELOCS_STRIPPED flag
is added to PE Characteristics.

Pre-Infection block
The author of the analysis calls this block in this way because Expiro file infector modifies target file
headers to correctly deal with new added Section.
First, if Bound Import directory is present, its new location is calculated (indeed a new Section header
has to be added), its data moved to the right position, and its corresponding RVA and size attributes
updated in PE header. A new Section header is inserted in the PE header: Expiro calculates the aligned
size of original target file and set resulting value as the new RAW address of section; then compiles each
field of section header (SizeOfRawData = Expiro section aligned size; VirtualAddress = last section end
VA, Section characteristics = Read, write and execute) and copies section name (“.vmpX”). Finally, it
updates 2 fields of Nt headers: NumberOfSection and SizeOflmage. As the reader already knows, the
“SizeOflmage” field is a multiple of SectionAligment and indicates the size of loaded executable in virtual
memory. Indeed it is filled with the following formula: Expiro Section RVA + Section aligned
Virtual Size.
At this stage Expiro code calculates new encryption values (they are different from originals). For both
PEs located in intermediate buffer:
- The Pe module size is shifted right by 12 bit. The resulting byte is placed in the second byte of PE.
- The remaining 12 Less significant bit are shifted right by 9 position and placed in third byte of PE
- Gets a random value exploiting "rand()" API, divides it by OxFD and gets remainder; adds 1 and
sets it as a new XOR Encryption key for current module; xor it with 0x4D value (hex
representation of ‘M’ character), and stores in the first byte of PE.
- Stores original PE entry point virtual address at offset 0x41 of current PE
- Fill Dos Header with random values (from offset 0x03 to 0x3C). Do the same for all padding bytes
between Dos Header and Nt headers (including 2 bytes of Nt Headers signature, and excluding
the DWORD value located at offset 0x41). In this way Expiro would like to try to bypass some AV
protections.
The last step concludes Pre-Infection block.

Infection block
Infection block starts with the filling of the intermediate buffer allocated in the Initialization block.
Target original entry point code is copied in the beginning of intermediate buffer. The latter buffer is
now completely formed (but not encrypted), and is directly copied in target file mapped memory (new
Expiro section RAW address). All needed data from Expiro current architecture PE sections are obtained,
then the code starts to encrypt both Expiro PEs located in target file mapped memory: with the values
obtained from Pre-Infection block, it xor PE bytes starting from forth to last. Each Expiro PE has its own
calculated encryption key stored xored (with 0x4D) in the first byte. Target file Pe header is again
modified:
“SizeOfStackReserve”, “SizeOfHeapReserve” values are increased (by Expiro PE values)
"MajorlmageVersion" is set to 0xD, "MajorLinkerVersion" to 9, "MinorlmageVersion" to 0x1C,
and last 4 bits of "TimeDateStamp" are zeroed out. This fact represent the Expiro signature
(target file will not be re-infected)

Command - C\Users\&ndrea'\Desktop\sdchange.exe - WinDbg:6.2.9200.16384 AMD64

e

4

|Evaluate
j0:001: =

ladh
2c_35]
19 &

[1=]
E7

35

ca cf
=d d8

75
04

4z 18

cd

b
5f 00 00

cl

7f

0o 0o 00 00 =0

[d=] Ec _35] 22
E4 45 6f cb

3a
dz
38
Ea
92

d3 o7 7b ba
36 Ec 03 03

=9
==
76
07
49

[l
db
64
fe
1b

1f
7b
b
f4
36

4f

03 03 03 03 e3

3

gooooooon”

03

0:001> * X64 Expiro PE Uncompressed:
0:001» db 2854575
000oo000- 02854575
0o0ooo00- 02854585
00000000 02854595
00000000 0285d5a5
0oooooo0- 02854505
0oooooo0- 02854525
0o0oo000- 02854545
00000000 0285455
000oo000" 02854515
000oo000- 02854605
0:001l: g
Breakpoint 1 hit
00000001 000c4bsz 448b9d38£4df£E £
0:001: = X4 Expiro PE Encrypted:
0:001> db 2854575 1AQhL

00000000- 02854575
000oo000- 02854585
000oo000- 02854595
00000000 0285d5a%
00000000 0285d5k5
00000000 0285455
goooooon- 02854545
goooooo0-0285d5e5
00000000" 02854545
00000000 02854605
0:001» 7 Oxde * 0=4D
SEpress10n:
Encryption Key:

bl 48 ef-49 b3 {1
00 40 a6-17 £8 1d
dod 83 95-5b 01 71
32 db 07-fe 3d le
21 9f 76-08 1d le
73 71 ch-c2 90 75
45 08 48-d8 38 16
Ed 83 bE-Te 3= 36
01 06 00-22 el cf
00 0= 21-0b 01 02

mow rlld.dword ptr [rbp-2C8h] ==:00000000"01d746a8=|

b2 4b ec—-4a bO £2
03 43 a5-14 fb le
d3 80 96-58 02 72
31 d8 04-id 3e 1d
22 9c 75-0b le 1d
70 72 cB-cl 93 Te
46 0Ob 4b-db 3b 15
e 80 bE-Yd 3d 35
02 05 03-21 e cc
03 0d 22-08 02 01

ooooooo3

I

50 04
33 86
8f 76
73 80
chb dc
el 7d
ab ba
64 =0
51 00
37 00

6f
1d
ckb
oo
68
ba
=7
40
oo
da

[
1e
[=ti]
03
]
b9
(=2}
43
03
49

8a
eh
f1
oo
Ela]
de
=7
ds
oo
oo

000l |

L

Figure 4. Dump of X64 Expiro PE found in memory before and after encryption. Noteworthy is the

encryption key (4E * 4D = 3), PE size [(0x2C << C) + (0x35 << 9) = 32A00], and Nt Header with signature stripped

At this stage, Expiro generates Polymorphic entry point code: “GenerateEpCode” procedure is called
with original EP address as parameter. This function has 2 procedure addresses hardcoded used as
model: one for 32 bit code, and one for 64 bit code. Unfortunately | have not found any polymorphic
engine inside all analysed Expiro samples. | am sure that malware authors has left their polymorphic
engine inside their organization. By the way, we are going to give a short sight at different polymorphic
code types afterwards....

mov r11d, [rbp+duwArchType]
mov r10, r13
shl r10, 3
cmp 11, 10 ; 1f (dwArchType *= AMD6Y4)
jnz short TargetIs32bit
 J Y
@ ra 5 @ ra 5
lea r14, Amd64EntryPointFuncModel
jmp short loc_1086ABAAC TargetIs32bit:

lea

r14, x86EntryPointFuncModel

J

Yy

&

loc_1006ABAAC:
r11, quord_1861CC4BO

lea
mov
lea
add
sub

ri11, [r11]

r18, quord_1861CC5D6

r11, [r18]
r11, BEh

Figure 6. A snapshot of Expiro “GenerateEpCode” routine

The job of “GenerateEpCode” is to determine the entry point code function model (based on target file
architecture), to compile it with right relocated addresses (and right decryption key), and then it has to

copy the new generated code in the target file entry point address. The function exits and return the
new EP code size. Expiro exploits a big data structure to pass all needed information to the
“GenerateEpCode” routine:

int GenerateEpCode(LPBYTE targetPtr, EXPIRO _STRUCT * pExpStruct, DWORD ExpMainRva,
DWORD dwOrgEpRva, DWORD archType)

At this stage the target file is quite ready to be written. The last thing remained to write is the right
offset for the JUMP to “ExpiroMain” procedure located in the end of infected Ep Code. Expiro calculates
offset and writes it in the right position (pattern “mov rax, <ExpiroMain> - push rax - retn).
Finally it creates a target file with the same name of the original one but with “.vir” extension and writes
the new memory mapped infected PE. “CopyFile” Windows APl is used to actual overwrite original file,
and, if it succeed, the “.vir” file is deleted. The target file is now infected, procedure exits.

Polymorphic code - a quick sight about different types of polymorphism and
obfuscation

As already explained, no clues of polymorphic engine has been found (this is different from what we
have seen in the olds Virut droppers). By the way, Expiro exploits a lot of polymorphic code to try to
evade AV detections. Furthermore, Expiro code is quite difficult to understand because It uses some
obfuscation techniques. The obfuscation is almost done using math. The typical pattern found is
something like:

lea rl1, g gqwEight ; 8

mov ri1, [ri1]

lea r10, g qwFive ; 5

mov r10, [ri10]

lea rll, [rl11+rl10+2Fh] ; R11 = Ox8 + Ox5 + Ox2F = 0x3c
mov rlid, [rll+ri12] ; rll = Nt Header Rva

This code snipped is used to load Nt header RVA in R11 register. This can be accomplished with only a
single assembly instruction: mov r11D, dword ptr [ri12+3Ch]. The usage of 6 instructions that load
pointers of some static global variables, resolve them, and perform some math, render code
understanding a bit tricky. By the way this kind of obfuscation is quite easy to understand, even because
the pattern is highly repeated:

mov rax, 1CEh

lea r9, g_gwsSix

mov r10, ds:0[r9] ; r10 = 6
cqo

idiv rio ; RAX = “M”

The assembly code above is another sample of easily obfuscated code. To move ‘M’ char to EAX register
Expiro exploits an “integer divide” math operation and 5 instructions.

In the same way, Polymorfism is quite simple but effective. 32 bit Expiro infected entry point code, for
example, exploits a common pattern in its beginning:

@ ea &5

assume fs:nothing, gs:nothing e

; Attributes: bp-based frame ; Attributes: bp-based frame
public start public start

start proc near start proc near

nop * var_8= dword ptr -8
push eax var_4= dword ptr -4
inc ecx

push ecx push eax |
push edx nop

%nc ecx push ecx

inc ecx push edx

push ebx nop

inc ecx push ebx

push esp nop

inc ecx push esp

push ebp push ebp

push esi] push esi

nov esi, edi push edi

push esi push ebp ___J
push ebp =] nov ebp, esp
mov ebp, esp sub esp, 7Ch
sub esp, 78h mov esi, OCh
nov [ebp+var_14], 9

nov [ebp+var_8], 5

and [ebp+var_C], ©

mov eax, [ebp+var_14]

sub eax, 9

* = Expiro common startup code pattern

As the reader can see, NOP instructions are substituted by INC instructions in this sample BUT 9
registers are pushed on the stack in both code snippets. After the common pattern, real polymorphic
code begins. As | have already stated, Expiro engine employs polymorphic techniques to bypass AVs
detection. We will make here some examples. Assume that we would like to set EAX register to 0, Expiro
does this in at least 3 different ways:

1. mov esi, OCh

... (other instructions)

mov eax, esi

sub eax, 0Ch ; EAX

I
o

2. mov [ebp+var 147, 9

mov [ebp+var 8], 5

and [ebp+var C], O

... (other instructions)

mov eax, [ebp+var_14]

sub eax, 9 ; EAX

I
o

3. mov [ebp+var_8], 10h

mov [ebp+var C], 4

... (a lot of other instructions)
mov eax, [ebp+var C]

mov ecx, [ebp+var_ 8]

inc ecx

div ecx ; EAX

0

In my analysis, | haven’t seen any classical polymorphism patterns, like, for this example, “xor eax,

eax — sub eax, eax” or something classical like these. The polymorphism exploited by Expiro hinders
the static identification of its infected files. An AV company should use an x86-64 emulator to correctly
clean and identify an Expiro forged PE file. This is actually not True. A careful reader has already
identified some clear weak points in infection algorithm that let even a static software to be able to

correctly clean an infected file. Am | right? (if this is not the case and if the reader is interested just mail
me at address aall86@gmail.com).

Next steps after service infection

Expiro file infector, after it has completed service infection, returns execution control to main thread.
Main thread immediately calls “InfectProgramsMenuAndDesktop” routine. This, as the name implies,
exploits the “SHGetSpecialFolderPath” API to obtain Start menu and Desktop directory paths. Then it
calls “InfectDirectory” function to enumerate all files in the target directory and infects all Ink, exe, scr
file types. File and directory enumeration is performed using the classical FindFirstFile / FindNextFile
APIs. Infection process for “scr” files is the same what we have already seen for exe files. Windows Link
files instead are parsed by “InfectWindowsLink”. The latter Expiro procedure manually parses target link
file (here are windows Link specs: http://msdn.microsoft.com/en-us/library/dd871305.aspx). If some
conditions are met (HeaderSize equals to Ox4c, LinkFlags includes HasLinkInfo flag, and others), link
target is resolved and “InfectFileStub” routine is used to perform actual infection.

Execution control is again returned to Expiro Main thread to perform the 4 last things.

1. Builds configuration files strings and creates 3 threads that performs the following jobs: system
volume ID string building (the Volume where Windows System directory resides), creation and
management of configuration files; temporary internet files analysis, active windows
enumeration and analysis

2. All system drives infection. Expiro spawn another thread that begin its execution at
“InfectDrives” routine. This procedure builds a memory map of each drive letter found in the
system, and infects all files located in a target volume only if the drive is fixed, removable or
represent a remote connection (this is a very infective threat). “InfectDirectory” routine is again
exploited to perform actual infection in each volume. “InfectDrives” function is called in an
endless loop every 120 seconds. In this way even a just-connected USB stick could be detected
and infected by Expiro.

3. Steal user personal certificates

4. Finally start Expiro window message pump

Unfortunately, | haven’t had much time to deep investigate these 4 last characteristics. | personally
think that they can be interesting. If a curious reader would like to deepen how they are implemented,
please absolutely let me know.... (send me a mail at aall86@gmail.com)

Conclusions
In this brief analysis paper we have investigated about the first “multi architecture” file infector in the
wild. We have seen that, although Expiro employs some clever ideas to do its job, there are a lot of
characteristics that are very weak, in particular:
- Absence of the real polymorphic engine in infected files
- Simple XOR encryption of its internal section
- Usage of simple Win32 APIs to perform actual infection process (like Process32First /
Process32Next toolhelp functions or Service control manager APIs)
- Some noticeable patterns that let polymorphism and obfuscation useless. Even a static remover
can be used to correctly hit and destroy infection part of files.

By the way keep in mind that this threat is very effective. As we have seen previously, It can even infect
files that reside in removable or network drives. This can be a serious problem for corporate users that
have active network shares. Even an USB key can be used as virus spreading vector.

We will see in these months if a new improvement version of this threat is released, perhaps with some
weak points modified.

Special thanks always goes to Kernelmode.info folks, who provide me fresh droppers for the analysis.

And, of course, thanks even to Expiro authors, who yield me hours of fun in reversing and understanding
their creature... © © ©

Andrea Allievi
Last revision: 14/01/2014

10

