Andrea Allievi 10/02/2014
Independent Security Researcher

AMD64 Memory Segmentation - Is the game over?

In these days that | was currently quite free, | have took the occasion to deepen a feature of all X64
systems... Indeed last month, when | was analysing a sample of Expiro File infector, | encountered an
instruction like this:

mov rll, gs:10h

Of course, according to the code context, and to my previous x86 experience, the previous opcode will
move the content of current Teb (thread environment block) Stack limit field, in r11 register.
But how this is implemented in a X64 CPU?

According to Intel manuals (System Programming Guide, Chapter 3.2.4):

“In 64-bit mode, segmentation is generally (but not completely) disabled, creating a flat 64-bit linear-address
space. The processor treats the segment base of CS, DS, ES, SS as zero, creating a linear address that is equal to
the effective address. The FS and GS segments are exceptions. These segment registers (which hold the segment
base) can be used as an additional base registers in linear address calculations. They facilitate addressing local
data and certain operating system data structures.”

It seems that 64 bit segments and their descriptor tables are now useless. FS and GS segments are
exceptions. | have dumped a GDT from a live 64 bit system, then developed a specific driver to perform
some analysis. Here are the results:

Command - Kernel ‘com:pipe,resets=0,reconnect,port=\\.\pipe\kd_windows... — o -

kd> r cs, ds. es, fs. gs,L es, ss
cs=0010 ds=002b es=002b [s=0053)(gs=002b) es=002b ss=0018
kd> dg 10 50

Si G Pr 1o

Sel Base Limit Type ze an es ng Flags
0010 00000000 00000000 00000000 00000000 Code RE Ac
0018 00000000 00000000 00000000 ffffffff Data RW Ac
00000000 00000000 00000000 ffffffff Code RE Ac
00000000 00000000 00000000 " ff££fffff Data RW Ac

0030 00000000 00000000 00000000 00000000 Code RE Ac
0038 00000000° 00000000 00000000° 00000000 <Reserved>
0040 00000000 00b96080 00000000 00000067 TSS32 Busy
0048 00000000°0000f£££ 00000000 0000£800 <Reserved>
[0S0 ffffffEf " £££20000 00000000°00003c00 Data RU Ac

P Lo 0000029b
P N1 00000c93
P N1l 00000cftb
P N1 00000cf3
Nb By P Lo 000002fb
Np N1 00000000
P N1 0000008b
Np N1 00000000
Bg By P N1 000004£3

WoOOoOOoOWWWoo | —r
L)
uw
)
[Is]

Ikd) [l

Figufe 1. GDT Dump from a 64 bit Windows 7 system. FS and GS segment descriptors seems meaningless

According to the previous picture, it seems that all x64 segments are used only for memory protection (Ring
0-3 protections). But, one important question arise: how is possible that GS segment base address is 0? It is
indeed very improbable that TEB could be located at address 0x00000000.

The following snapshot demonstrate that all segments are exploited in X64 architecture only for memory
protection, meanwhile standard x86 segments are used for full segmentation as in the previous x86
architecture:

8 * C:\Drivers\Windbg\UserApp.exe ‘) o | B R

AaLl86 x64 Segmentation test
[Process #2868.160. Current TEB: BxBO0BB7ff’fffddBon.

: User—-mode segment registers
%33, DS = Bx2bh,. ES = Bx2bh. FS

status:
= Bx53, GS = Bx2h, SS = Bx2b

Current User—-mode segment registers status:
ICS = Bx23. DS = Bx2b, ES = Bx2h, FS = Bx53, GS = Bx2h, S5 = Bx2hb

' Figure 2. My GDT test application showing different segment selectors between 32 bit and 64 bit mode

So far so good... Now it’s time to understand why FS and GS segments work in the way as they do for 64 bit
long mode. The answer to the question resides in Windows X64 Syscall handler. Intel manual states that
SYSCALL new instruction transfers execution control to the address found in IA32_LSTAR model specific
register (and changes CPU current privilege level). IA32_LSTAR register points to “KiSystemCall64” Nt kernel
routine. Whenever a native APl is called from user mode, Ntdll code exploits SYSCALL instruction to perform
Kernel transition. The transition is managed by “KiSystemCall64” procedure.

KiSystemCall64 proc near

swapgs ; Swap IA32_GS_BASE and IA32_KERNEL_GS_BASE
mov gs:16h, rsp ; curKpcr->UserRsp = RSP

mov ¥sp, gs:1A8h 5 RSP = KPCR->Prcb.RspBase

push 2Bh

push quord ptr gs:18h ; PUSH UserRsp

push r11 ; R11 = User mode RFLAGS register

push 33h

push FCcX ; RCX = Address of next user mode instruction
mov rcx, r18

sub rsp, 8

push rbp

sub rsp, 158h ; Allocate stack space

lea rbp, [rsp+86h]

mov [rbp+BCBh], rbx

mov [rbp+BC8h], rdi

mov [rbp+8BDBh], rsi

mov byte ptr [rbp-55h], 2

mov rbx, gs:188h ; RBX = Pcr->Prcb.CurrentThread

prefetchw byte ptr [rbx+96h]
stmxcsr dword ptr [rbp-54h] ; Store contents of MXCSR register

; The MXCSR register is a 32-bit register containing flags

; for control and status information regarding SSE instructions
ldmxcsr dword ptr gs:186h ; Loads the mxcsr register from Pcr->Prcb.HxCsr

cmp byte ptr [rbx+3], 8 ; if (pCurThr->Header .DebugActive)
mov word ptr [rbp+86h], O
jZ NoDebugThr

Figure 3. Windows 8.1 “KiSystemCall64” code snippets

This routine first invokes “swapgs” instruction. According to Intel manuals: “SWAPGS exchanges the current
GS base register value with the value contained in MSR address CO000102H (1A32_KERNEL_GS_BASE). The
SWAPGS instruction is a privileged instruction intended for use by system software”. Based on our test, the latter
information is not 100% accurate. The value of GS base register actually equals to the value contained in
IA32_GS_BASE model specific register. In x64 Windows systems, these MSR contains:

e |A32_KERNEL_GS_BASE - Pointer to current processor control region (PCR)

e |A32_GS_BASE - Pointer to current execution thread TEB

e |A32_FS_BASE - Currently unused in Windows x64. Its value equals to the base address of 32 bit FS
segment descriptor (located in GDT). In 64 bit executables an instruction like “MOV RAX,
FS:[10h]” causes an access violation

The test driver | have developed confirms all the previous conclusions. As a matter of fact, Windows
operating system, when working in 64 long mode, has GS segment that always paints to current thread TEB
(in user mode), whereas in kernel mode points to current processor PCR.

Command - Kernel 'com:pipe,resets=0,reconnect,port=\\.\pipe\kd_windows_7_x64 - de.. - O _ '

kd> g

Dumping System GDT... (Process 1148)

GDT Segment #10h i1s 64 bit one! Base: 0x00000000'00000000 = Limit: Ox00000000
GDT Segment #18h is 32 bit one! Base: 0x00000000 - Limit: Oxffffffff

GDT Segment #20h is 32 bit one! Base: 0x00000000 — Limit: O=xffffffff

GDT Segment #28h is 32 bit one! Base: 0x00000000 - Limit: Oxffffffff

GDT Segment #30h is 64 bit one! Base: 0x00000000'00000000 - Limit: Ox00000000
GDT Segment #40h is 32 bit one! Base: 0x03d3d080 - Limit: 0x00000067

GDT Segment (#50h is 32 bit one! Base: 0Oxfffe0000]- Limit: 0x00003c00

GDT Segment #60h 1s 32 bit one! Base: 0x00000000 — Limit: Oxffffffff
IA432_FS_BASE Msr register value: [@=00000000 fffe0d000).

IA32_GS_BASE Msr register value: Oxfffff800°'029£2d400.

IA32_KERNEL_GS_BASE Msr register value: 0x000007ff'fffde000.

End of dump!!!

Figure 4. My test driver showing the 3 Model specific registers that deal with segmentation

Adding a segment descriptor, and doing some other tests, confirms again that X64 GDT is used in long mode
only for memory protections. In 32 bit compatibility mode, all segments are used as normal for memory
segmentation.

Returning to Windows System call handler, its job is quite easy: as the reader can see, the user-mode stack
pointer is saved in PCR data structure, Kernel stack pointer is then retrieved, all GP registers (and MMX flag
register) are pushed on the stack and user-mode debug environment is saved (if needed). Execution control
is transferred to “KiSystemServiceStart”. The latter routine is the key of System service dispatch feature:
first, it calculates the right system table pointer (if the target native APl number is above 0x1000, then the
required function is a Win32 Gdi graphics one, otherwise a standard Nt kernel API). It retrieves the right
native API pointer from table, copies all remaining stack parameters (KiSystemServiceCopyStart) and finally
calls kernel API. Noteworthy is that Windows 8 & 8.1 Syscall dispatch is totally changed from older
Microsoft operating systems. Deep describe these new features is behind the scope of this brief paper...

Last revision: 12/02/2014

