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Sirefef under microscope: The clever ZeroAccess evolves again!

Last month in our labs we dealt with some machines infected with new Sirefef virus (dropper dated
Sectember 2013). | personally reversed new droppers (even the July 2013 one) and finally wrote the
remover for my Company. We have observed a lot of clever tricks exploited by this virus. Here in this
analysis, we are going to describe the majority of them. Sirefef authors are the same as the old
ZeroAccess rootkit that, even 2 years ago, employed very nasty strategies to infect a target system and
remain undetected...

In the beginning was ZeroAccess

The first sample of ZeroAccess rootkit is dated in fall of the year 2009. In that year the infection was very
innovative because of the AV killing feature and nasty rootkit behaviour used to hide its presence in the
target system. | will not cover here all Zeroaccess evolutions: | would like to outline only the previous
analysis completed by my colleague Marco Giuliani (Saferbytes CEO) and me:

e ZeroAccess —an advanced kernel mode rootkit

e ZeroAccess Gets Another Update

e ZeroAccess APC: My First blog post (an article in Italian language posted on my blog)

ZeroAccess rootkit has evolved over the years and lost its rootkit part. The current release is called
Sirefef and it has become a very nasty virus.

First stages of decryption

The first dropper analyzed is dated July 2013 and is encrypted 3 times. The first decryption is quite easy
to overcome: it does few memory transfers and finally calls decrypt routine. First decrypt routine
employ some math and compare instructions to end its job. The brand-new decrypted buffer is a PE file
that needs to be relocated. After the relocation and IAT resolution is done, the execution control is
transferred to PE decrypted executable. This Pe doesn’t do anything interesting: Starting from execution
thread TEB, it resolves some Kernel32 API addresses (beginning from the classical GetProcAddress) and
builds a simple IAT. Then it starts to decrypt, map and relocate a final PE file in its address space.
Execution control is returned to latter PE file that is actually mapped in memory.

Here is where things become interesting. The last decrypted Pe begins execution, checking if it is a
classical executable or a DII. In the first case, it does the following:
1. Obtains weather the process is launched under a Wow64 environment (exploiting
ZwQueryInformationProcess native API, with ProcessWow64Information parameter)
2. Detects if a debugger is attached to current process
e If a debugger is attached, Sirefef employs a strange behavior: it loads “untfs.dll” library and
tries to resolve the function with ordinal 0x2302. If it succeeds, it calls resolved function. A
careful researcher can suddenly identify that something is suspect. If the reader analyses
“untfs.dll” system file, he can realizes that this library doesn’t export any function with ordinal
0x2302. We will see what happens here afterwards.
e Otherwise, if a debugger is not present, Sirefef calls its main stage function (called by the
authors “MainZaDbgFunc”). This latter one creates a Debug object and re-launches itself as a
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debugged process (CreateProcess APl with DEBUG_PROCESS flag). Then it creates a user-mode
thread that will be used to communicate with the debugged process via a mailslot (named
“uewuyewlID” where “ID” represent Sirefef process ID formatted in 8 hex digits).

Finally the debug cycle begins. Sirefef now waits and processes each debug event generated
by debugged process.

Go beneath protection: discovering real Sirefef code

At this stage we have two Sirefef processes born from the same image file. The first process is the
debugger, which controls the second Sirefef process: the debugged one. The debugger cycle analyses
every event that debugged generates.
When the debugged process is first created, the debugger receives CREATE_PROCESS_DEBUG event. The
Sirefef code that manages this event first queries basic information about process (PEB, image file
handle, and so on...). It queries each DLL loaded by the debugged process (LOAD_DLL_DEBUG event, the
code that manages the latter event is very similar) and adds it to an internal list. If name of the module
loaded by debugged process equals to “untfs.dll”, then Sirefef jumps to a platform-dependent
procedure that enables trap-flag in target debugged thread context. Afterwards, execution of the
debugged process is resumed. The enabled trap flag causes the debugged to generate another event,
after the original “untfs.dll” section object has been created: EXCEPTION_DEBUG. The code that manages
this event first retrieves target thread list entry, and then checks for three kind of exception:
DBG_CONTROL_C, STATUS_BREAKPOINT and STATUS_SINGLE_STEP.
e Ctrl+C exception is used to pass calculated volume MD5 between the debugger and debugged
process
e Software breakpoint exception is actually not used. Execution indeed is resumed with
DBG_EXCEPTION_HANDLED code.
e Things gets interesting in “Single step” exception management code. We will see this in a while...



AnalyzeDbgException proc near ; CODE XREF: MainZaDebuggerFunc+195}p
push ebp
mov ebp, esp
sub esp, OCh
push ebx
push esi
mov esi, eax ; ESI = Win32 DEBUG_EVENT structure
xov ebx, ebx
cmp [esi+5Ch], ebx
jnz short ProtectOk
push dword ptr [esi+OCh] ; ExitStatus
push dword ptr [edi+18h] ; ProcessHandle
call ds:Z2uTerminateProcess
ProtectOk: ; CODE XREF: AnalyzeDbgException+FTj
push duord ptr [esi+8]
mov ecx, edi ; ECX = ZA_CP_EVENT struct
call SearchThrByldInList
mov [ebp+1pCurThrEntry], eax
mov eax, [esi+BCh] ; EAX = Exception code
cmp eax, DBG_CONTROL_C
jz CtrlCExc
cmp eax, STATUS_BREAKPOINT
jz BreakPointExc
cmp eax, STATUS_SINGLE_STEP
jnz ContinueDbg
lea esi, [edi+20h]
cmp [esi], ebx
jz ContinueDbg
cmp [ebp+1pCurThrEntry], ebx
jz short DecryptError
lea eax, [ebp+SectHandle] ; Here we are processing Single step exception
push eax ; Extract encrypted PE and create memory section
call CreateMemSecAndDecryptPe
test eax, eax
jz short DecryptError
00000DBA 004019BA: AnalyzeDbgException+SE S

Figure 2. Sirefef debugger code that process EXCEPTION_DEBUG event code

Single Step Management code

Single step exception management code begins with “CreateMemSecAndDecryptPe” procedure: it
allocates a large buffer with LocalAlloc API, then it begins to decrypt 133 KB of data starting at offset
0xDO0 of _rdata section. Encryption is again based on math operations (I haven’t investigated too much
on this encryption algorithm). “CopyAndRemapPelnMemSect” procedure exploits native APIs to create
and map an unnamed memory section in current process address space, as big as the just allocated
buffer. It copies the entire decrypted data (we will call this data the clean Sirefef PE file), perform IAT
fixups, and finally it unmaps the latter memory section (but doesn’t close it - section handle will be used
as reference). At this stage memory section of original “untfs.dll” is unmapped from debugged process
(exploiting zwunmapViewOfSection native API). Sirefef clean PE is then mapped at the same virtual
address of old original library. This is one of the tricky features of Sirefef. Furthermore, Sirefef changes
target debugged thread context, setting EAX register to 0x40000003. This value equals to
STATUS_IMAGE_NOT_AT_BASE code. Why this behavior?

Here we are seeing one example of the large knowledge of the Sirefef authors about Nt architecture.
Indeed, after we have reversed a big slice of NTDLL code, we saw that LdrLoadDII procedure, called
every time an executable implicitly or explicitly (via LoadLibrary(Ex) API1) loads a DLL, exploits
LdrpMapViewOfSection to map the DLL section object just-created with the aid of ZwCreateSection. Our
reader should know that every executable module loaded by Windows is shared between processes by
“Section” objects. LdrpMapViewOfSection in turn uses ZwMapViewOfSection to do the actual map. The
latter native interface every time is called to map a section object created with SEC_IMAGE attribute, if it
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hasn’t been able to map image section object at its preferred base address (and the PE image file buffer
is not flagged with IMAGE_DLLCHARACTERISTICS_DYNAMIC_BASE), it returns to the caller with the
warning status code STATUS_IMAGE_NOT_AT_BASE. This behavior is implemented in Windows kernel: a
large call chain starts from NtMapViewOfSection routine and ends at MiMapViewOfImageSection. The
latter one returns a warning code to the caller every time it detects an image section not mapped at its
preferred base address.

Now that we have understood what STATUS_IMAGE_NOT_AT_BASE means, one question suddenly arises:
How this return code affects the LdrpLoadDIl mapping routine? LdrpFindOrMapDIl (internal procedure
called from LdrLoadDlIl) checks the return address of LdroMapViewOfSection, in case of an “Image not at
base” warning status, code is diverted, and LdrpRelocatelmage is called to do the actual relocation
process. If a relocation table is found, the target PE buffer is processed and relocated, otherwise a
STATUS_CONFLICTING_ADDRESSES error is returned and DLL load process will be broken (indeed it
means that there are 2 modules that want to be loaded at the same addresses. The last one can’t be
relocated: Nt loader can’t proceed).

mov [ebp+secSize], al

lea eax, [ebp+ViewSize]

push eax ; ViewSize

lea eax, [ebp+ImageBase]

push eax ; Basefddress
push dword ptr [ebp+secSize] ; secSize

push [ebp+AllocationType] ; imageFullPath
push [ebp+String1.Buffer] ; imageName
push [ebp+SectionHandle] ; SectionHandle

call _LdrpHapUiewDfSection@24 ; LdrpMapUiewDfSection(x,x,x,%x,%x,x)
mov edi, eax

Xor esi, esi

cmp edi, esi

jl MapError

L B B B B

mov esi, STATUS_IMAGE_MACHINE_TYPE_MISMATCH
cmp ebx, esi

jz MachineMismatch

mov eax, [ebp+pHNtHdr]

mov ecx, 2000h

test [eax+16h], cx

jz short loc_77F20F42

or [ebp+var_ 8], 4

cmp ebx, STATUS_IMAGE_NOT_AT_BASE

jz ImageNotAtBase

; CODE XREF: LdrpFindOrMapD1l(x,x,X,X,X,X)
; LdrpFindOrMapDll(x,x,x,x,x,x)+1EOFTj ...
mov eax, _NtdllBaseTag
push 78h ; Size

ImageNotAtBase: ; CODE XREF: LdrpFindOrMapDll(x,x,x,>
push dword ptr [ebp+secSize] ; PUOID
lea ecx, [ebp+Destination]
push ecx ; moduleFullPath
push eax 5 PNtHdr
push [ebp+UiewSize] ; dwSize
push [ebp+ImageBase] ; ImageBase
call _LdrpRelocatelmage@20 ; LdrpRelocatelmage(x,%,x,%,%)
mov edi, eax
test edi, edi
jge RelocSuccess
jmp Error

0001EBDO 77EDF7D0: LdrpFindOrMapDll(x,x,Xx,X,X,x)-3F951




Figure 3. A snap of LdrpFindOrMapDII code. The reader can see that return code of LdrpMamViewOfSection
is checked, and if it equals to STATUS_IMAGE_NOT_AT_BASE it proceeds to relocate PE buffer

Sirefef authors knew this fact, and saved developing time transferring “relocation efforts” to the
Windows kernel code. At this stage, the debugged process is resumed and the execution controls is
finally transferred to Sirefef pure clean code (in debugged process). From now on, the Debugger is not
involved in the infection...

Sirefef pure clean code

In our analysis, we are going to speak about the infection dated September 2013, not the July one,
because there are already some available analysis on Web. | don’t want to repeat what others security
researchers have already done.

We will start from the Sirefef September clean code entry point. For this release, the authors have
changed the infection logic. While in the previous release they replaced two COM objects (CD Burning
ShellFolder and Windows WMI Helper DIl) with the aim to auto-load infection every time the
workstation boots, now they use a more standard way: one Windows service and one link to the
classical “Run” registry key.

Sirefef clean code is a small routine that does basic things: first of all, it retrieves some basic information
like the current OS version, whether the process is under Wow64 environment and current startup
command line. If no command line argument is found, it means that Sirefef has to be installed.
InstallSirefef routine starts creating its setup event named “{OC5AB9CD-2F90-6754-8374-
21D4DAB28CC1}”. If an instance of setup event already exists, the process is immediately terminated
with ExitProcess API (it means that another installation is still in progress). Otherwise it calls InjectZaDlIl
to inject a Sirefef dll to “explorer.exe”. InjectZaDIl locates and extracts the right Sirefef compressed DLL
(aPlib compression type), based on the current Os platform (AMDG64 versus standard x86), in a buffer
large enough to contain it. The memory buffer content containing DLL is subsequently processed (IAT is
partially resolved, only for those modules already loaded in the target process), relocated and copied in
a section object mapped even in the target address space. Finally, the section object is unmapped from
Sirefef process (only a copy mapped in the target process remains) and a thread is crated in the target
process address space exploiting RtICreateUserThread native interface. This just-born thread begins
execution in Sirefef DLL code entry point. We will take a glance at what this DLL does afterwards...

Let’s now return to Sirefef main process setup routine...

“CreateGoogleEnv” routine does the actual setup process: first, it enables SeRestorePrivilege in the
current process token and builds a particular security descriptor that has “Anonymous logon” as owner
and a DACL that allows every access type except FILE_LIST _DIRECTORY to “everyone” group. It then
queries Local AppData directory reading its location from registry
(“HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\User Shell Folders” key) and starts to build the
Sirefef main path (local user security context). Here we see another clever trick employed by Sirefef
authors. We know indeed that the native layer of Windows operation system can operate correctly with
every Unicode character, while user Win32 layer do not. Sirefef builds 2 paths based on the setup phase:

The first one is the local user path, and is used to store those files that run in a security context of
current user. The path is formatted as follows:
“%localappdata%\Google\Desktop\Install\{generated GUID}\<3 randUchr>\
<3 randUchr>\< RTL Chr — 2 randUChrs>\{generated GUID}\"
Where:
“%localappdata%" is the Local user application data directory (“C:\Users\Smith\AppData” for
example)



- “{generated GUID}" is a Sirefef generated directory name based on system volume MD5, like
“{0031a25b-264f-8e00-2b10-0595f10fed4c}” for example. We don’t describe here the algorithm
used for its generation because it is the same used in previous versions of this virus

- "randUchr” denotes a Unicode character that is outside the standard ASCII table, like “%%” for

example. Indeed a Unicode char is represented as a 16 bit word value, and it could be 65536
different characters, many of those are not supported by Win32 layer of operation system

- "<RTL Chr>"'is a special unicode character that is used by languages written in a right to left
direction (like Arabic). In this way the text that follows this special symbol is written starting from
the right position, ending in the left position...

The second path becomes the Sirefef main working directory, and is generated in the second phase of
the setup procedure. It is formatted like the first one with a slight variation:
“%ProgramFiles%\Google\Desktop\Install\{generated GUID}\
<3 space chars>\...\<randUChr - RTL Chr — randUChr>\{generated GUID}\"
As the reader can see, the main Sirefef path uses forbidden characters: directory named “...” is not
recognized by Win32 layer. As a matter of fact, if a user tries to open that path with Windows Explorer,
it receives an error message like the following one:

File Edit View Tools Help

Organize v Include in library * Share with = New folder

-

W Favorites Name Date modified

Bl Desktop b 24/10/2013 11:00 File folder
& Downloads

seenInstallny (0031a25b-264f:8600:2b10-0595f10feddc} »

[ File Edit View Tools Help |

Organize = 3 Open Include in library « Share with « New folder =~ [ @
A Favorites Name Date modified Type Size
Bl Desktop 24/10/2013 11:00 File folder

@ Downloads

| Recent Places
P

( ) C:\Program Files\Google\Desktop\Install\{0031225b-264f-8e00-2b10-0595f10feddc\ \ \...
dﬁ " refers to a location that is unavailable. It could be on a hard drive on this computer, oron a
network. Check to make sure that the disk is properly inserted, or that you are connected to
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e e

b= the Internet or your network, and then try again. If it still cannot be located, the information
E might have been moved to a different location.

& H

Figure 4. Error message received if a user tries to open Sirefef main path

Furthermore, applications like “Windows Command prompt” have some issues dealing with RTL char.
The last directory name of Sirefef working paths is protected by the anonymous Security descriptor built
at the start of setup function. In this way a user mode application can’t easily open the last directory of
Sirefef path.

After the “CreateGoogleEnv” procedure has created working path, it starts to generate Sirefef files. In
particular, it copies itself in a file named “GoogleUpdate.exe”, and generates its configuration file named
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“@”. Finally, it calls “AddZaToSystemStartup” or “CreateZaService” routine depending on the security
context (local user, or system) to assure that it will be loaded at every system startup. First time, the
function exploited is “AddZaToSystemStartup” (local user security context).

System reboot survival strategies

AddZaToSystemStartup is a simple procedure used by Sirefef to add itself in current user “Run” registry
key. A new registry value is created with native APIs and its data is set to “Google Update.exe”
executable (found in Sirefef local application data path) with a “>” argument as the command line.
Noteworthy is that Sirefef fakes the name of its registry value: its name is “Google Update” terminated
with a NULL char and 2 unicode characters (first is a RTL char, second is a random one). Exploited
ZwSetValueKey native APl accepts a unicode string that contains value name. The unicode string used by
Sirefef has a length attribute value as big as the sum of string size, NULL char and trailing characters.

In this way, if the user of infected machine tries to open Windows Registry Editor to navigate to infected
key, it will receive the following message:

r B
crvorpons vove (. =

8 Cannot display Google Update: Error reading the value's contents.

This is because Windows registry editor uses standard Win32 APIs. In particular RegQueryValue(Ex)
Win32 function, accepts only NULL terminated strings. When the application enumerate registry values
located in “Run” key, it receives only one part of Sirefef value name: “Google Update” NULL terminated
string. Afterwards, when RegQueryValue(Ex) is called to query value data, it tries to convert the NULL
terminated value name in a Unicode string structure, and it misses last characters. As a matter of fact,
the internal ZwQueryValueKey call fails because it cannot locate a non-existing value name. This
generates the error message.

After current user setup process is terminated, CreateGoogleEnv procedure closes all handles and exits.
Execution flow returns to the InstallSirefef routine. It checks whether the current user setup phase has
been completed with success, and, if so, it proceeds to the next phase: System setup.
“IsCurZaOrOldInstalled” routine is called to verify if some old version of ZeroAccess is active in the target
system. If so, it stops the setup process. Otherwise it tries to enable “Debug” privilege in the current
process token (needed for “System” account impersonation). If it doesn’t succeed, the
“SearchDebugPrivinToken” routine opens and analyses process token. In particular, it looks if the linked
token (used in UAC environments) has Debug privilege. If the user is an administrator and is under an
UAC environment, Sirefef tries to bypass UAC exploiting the classical Adobe Flash installer trick (already
described in few articles). If instead user is not an administrator, the setup process is ended. In this way
Sirefef can hit even normal users (does the reader remember user setup process?).

After admin privileges have been acquired, the “AdjustPrivsAndinstall” routine enables SeDebugPrivilege
and impersonates System Token with a precise algorithm:
1. Obtains processes and threads list with ZwQuerySystemInformation native API
2. Foreach process in the list it looks at the first that has ThreadCount and InheritedFromProcessid
members not equal to 0. This process is always “smss.exe” that runs in a System security context.



3. Impersonates “smss.exe” security token, and enables the following privileges (exploiting
RtlAdjustPrivilege Ntdll native Apis): SeMachineAccountPrivilege, SeTakeOwnershipPrivilege,
SeRestorePrivilege, SeDebugPrivilege, SeSystemProfilePrivilege, SeSecurityPrivilege

AdjustPrivsAndInstall proc near

Enabled = byte ptr -1
push ecx
push ecx
push esi
lea eax, [esp+OCh+Enabled]
push eax ; Enabled
push 0 ; CurrentThread
push 1 ; bEnabled
push 14h ; prividx
call ds:RtlAadjustPrivilege ; Enable Debug privilege

; in current process token

test eax, eax
j1 short Exit
call SearchAndImpersonateSystemThr
test eax, eax
jz short Exit
push 14h
call SckloFunc1
call DestroyAuProtections
push 5}
call InjectZaDll ; Inject 2A DLL in "Services.exe' process
mov esi, eax
test esi, esi
jz short Error

Figure 6. A snap of “AdjustPrivsAndInstall” routine. The reader can see the enabling of Debug privilege,
System Process token impersonation and the destroy protection function call

At this stage Sirefef thread runs in the “System” account security context, the most powerful account for
a Nt environment. If the impersonation worked well, the “DestroyAvProtections” routine is called: its job
is to terminate each AV process and to delete some System services like:

e mpssvc - Windows Firewall

e SharedAccess - Internet Connection Sharing (ICS)

e RemoteAccess - Routing and Remote Access

e PolicyAgent - IPsec Policy Agent

e Iphlpsvc - IP Helper

e Wscsvc - Security Center

e PcaSvc - Program Compatibility Assistant Service

e Bfe - Base Filtering Engine
Furthermore, another peculiarity of this function is that it makes “Windows Defender” and “Microsoft
Security essentials” Security suites useless: for each file, it applies a security descriptor (exploiting
ZwSetSecurityObject native interface) that has “System” account as owner and an empty DACL (no
access to anyone), and a reparse point targeting “c:\windows\system32\config” file (exploiting
“ZwFsControlFile” native API). In this manner, the user has no chance to open any file belonging to one
of those security suites.

In this way Sirefef will be sure that it can safely control the target OS without any obstacles. The same
DIl used in first setup phase is extracted and mapped in “services.exe” OS process and finally
“CreateGoogleEnv” is called again, this time for phase 2 of the setup process, executed in a System
Security context (setup phase number is passed to each functions as a parameter).



“CreateGoogleEnv” creates the Sirefef system working path (this time path is located in “Program files”
directory) in the same way as seen before. It then copies and creates Virus files in it, and finally calls
CreateZaService to create fake virus service.

The “CreateZaService” procedure will create Sirefef fake service. The term “fake” is used here to point
out that a target service is created without the aid of the Service control manager but only using Ntdll
native registry APls. The service main key, named “<RTL>etadpug”, and presented to infected users as
“gupdate”, thanks to its “right to left” char placed in the first position, is created in
“HKLM\System\CurrentControlSet”. Another clever trick is now exploited. CreateZaService also creates a
“Parameters” subkey in athe same strange way as seen before: its subkey name unicode string is built as
“Parameters”, NULL char, RTL char + 1 rand char.

0041B964 5C 00 53 060 65 B8 72 80 76 OO 69 00 63 00 65 60 \.S.e.r.v.i.c.e.
8041B974 73 66 SC A ¥ 65 080 74 00 61 00 64 00 70 00 s.\.[ e.t.a.d.p.
6641B984 75 00 67 00 00 60 00 68 78 060 7A 60 10 B9 41 00 u.g.l.... X.Z-- 1A
0041B994 61 68 72 I} ' i P.a.r.a.m.e.t.e.
0641B9AY '3 88 60 60 2F 20 64 27 EERCCIREECEIRISICEIE -1 A0 S I
0041B9B4 94 B9 41 060 54 060 79 08 70 00 65 00 00 60 60 60 oG!A.T.y.p.e.....
6041B9C4 ©8 60 OA OO B8 BY? 41 68 53 0606 74 00 61 60 72 00 ....@!A.S.t.a.r.

Figure 7. Dump of Sirefef service strings. Reader can see service name
(highlighted in orange color) and “Parameters” key Unicode strings

The handle to “Parameters” key is then closed (it was created only as an hurdle). CreateZaService then
set up the following values in main service key: Start, Type, ErrorControl, ObjectName, Description,
DisplayName, and finally ImagePath. The service image path is set to “Google Update.exe” main
executable located in Sirefef system working path, with a trailing “<” character used as an argument.
The strange format of “Parameters” key renders every attempt to destroy Sirefef service useless. Every
Win32 application (Windows SC utility, Registry editor, and so on...) that tries to destroy the service, will
encounter the same sort of error we have already seen for “Run” current user key.

At this stage, the Setup process is done. All work is now transferred to Sirefef DLL injected in
“explorer.exe” process (for current logged user security context), and in “services.exe” (for System
security context).The dropper process sleeps for 1 second and then ends with a call to ExitThread API.

Sirefef Injected DLL

The DIl extracted from Sirefef clean code (aPlib compressed) is platform dependent. Sirefef indeed
includes two versions: 32 bit and 64 bit. It begins its existence in a victim process. IAT is partially
resolved because dropper has resolved only its dependent modules that are actually loaded in victim
process. As a matter of fact, DIl entry point starts to resolve entire IAT, even for those modules not
loaded in victim address space. It exploits native loader interfaces like LdrLoadDIl and
LdrGetProcedureAddress. In this way, it loads even those DIl that are actually not mapped in victim
address space. When IAT is totally resolved, Sirefef DIl installs a vectored exception handler via
RtlAddVectoredExceptionHandler, loads “Iz32.dll” module and then employs a new trick: the objective
here is to create a new thread to execute code from the infected module. This could be detected by AVs
if start address of the thread is outside every loaded module registered in process PEB’s loader data.
Sirefef writes a trampoline in “Iz32.dIl” space, and finally it queues a work item in the victim process
thread pool. At the end current thread is terminated with Rt/ExitUserThread .

When the Work item starts execution, Sirefef regains control of the victim process. Work item first
checks whether it’s executed under a user security context, and if so, it checks if “actioncenter” or



“wscntfy” modules are loaded. These modules are responsible for showing Action center Security
related information to user. If one or both are found, Sirefef hooks their imported “Shell_NotifylconW”
API. New Sirefef Shell_Notifylcon procedure transform each “Message” passed as first parameter in
NIM_DELETE. The results are that each notify icon requested by the Action center is deleted and icon is
not showed.

za_Shell_HNotifylIcon¥W proc near ; DATA XREF: HookShellNotifylconW+ABlo
1pdata = dword ptr 8

push [esp+lpdata]
2

push ; NIM_DELETE

call g_lpOrgShellNotifylcon¥W ; CALL original

retn 8 ; Shell NotifyIconW(NIM_DELETE, lpdata)
za_Shell_NotifylconW endp ; and return

Figure 8. Sirefef simple new “Shell_NotifylconW” function

Sirefef main path (local user path or system path depending on security context) is retrieved with the
same algorithm seen at the beginning. Then the work item code creates one of Sirefef main events
based on current security context:

- System security context, event name will be: “{A3D35150-6823-4462-8C6E-7417FF841D77}"

- Local user security context, event name will be: “{A3D35150-6823-4462-8C6E-7417FF841D78}"
If all worked fine, Sirefef work item creates main DLL execution thread and then ends.

Main DIl thread does a lot of things. It starts waiting for the ending of the Setup process: it continuously
opens Sirefef setup event, and, if exists, it closes its handle and sleeps for 4 seconds. The process is
always repeated unless the same event will not exists anymore (ZwQOpenEvent routine returns
STATUS_OBJECT_NAME_NOT_FOUND). Sirefef DIl thread also opens its main System security context event
and, if found it, repeats exactly the previous procedure: in this way the system security context DIl code
and the current user security context DIl are synchronized.

At this stage DIl thread code calls “CreateGaclniAndModifyWinsock” procedure. This is a very important
function because, if executed in Server systems, it generates a lot of problems (I have indeed called this
feature “The Sirefef Server Hell”).
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. Restricted
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Figure 9. Sirefef main synch events: system security context event and local user security context event

CreateGaclniAndModifyWinsock and the “Sirefef Server Hell”

This function is a very nasty one. It begins to search whether it runs under System security context, and
if not, it tries to impersonate the System token. If it succeeds, it calls “CreateAssemblyDirs” to verify and
create (if needed) “GAC” and “GAC_MSIL” directories under “%systemroot%\Assembly”. The original
“desktop.ini” file located in these 2 folders is deleted. ZaModifyWinsock function code is now executed:
it opens “HKLM\SYSTEM\CurrentControlSet\Services\WinSock2\Parameters” Winsock key and launches
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Winsock catalogs modification routine. This routine infects Winsock; and is called 2 times: one for
Namespace catalogs, and another one for Protocol catalogs.
ModifyWinSockSubkey function indeed accepts two parameters: name of the registry value where to
obtain the name of current catalog and address of the parsing procedure. The parsing procedure instead
requires three parameters:

1. Total number of entries in current catalog;

2. Name of the entry key format string (“Catalog_Entries\\%012u");

3. Handle to catalog root registry key

PROTOCOL CATALOGS INFECTION

ModifyWinSockSubkey is first called with the following parameters: “Current_Protocol_Catalog” registry
value name and Protocol Catalog parsing procedure. It first retrieves the name of current protocol
catalog and opens the corresponding “Parameters” sub-key (in our test system sub-key was named
“Protocol_Catalog9”). Then it queries the “Num_Catalog_Entries” value from last opened key, with the
aim to find the right number of entries in current protocol catalog.

Sirefef protocol catalog parsing procedure then starts execution. For every entry in current protocol
catalog, it does the following:
1. Reads data of “PackedCatalogitem” value and checks if data is a binary type and its size is bigger
or equal to 0x128 bytes
2. Checks if GUID of catalog entry, found at offset 0x118 of read data, equals to a well-known GUID:
- lpv4 catalog entry - {E7OF1AA0-AB8B-11CF-A38C-00805F48A192}
- lpv6 catalog entry - {FOEABOC0-26D4-11D0-BFBB-00AAO06C34E4}
NetBios catalog entry - {8D5F1830-C273-11CF-C895-00805F48A192}
QoS catalog entry - {9D60A9E0-337A-11D0-88BD-0000C082E69A}
Unknown catalog entry - {9FC48064-7298-43E4-BDB7-181F2089792A}
3. If GUID matches, it zeroes out the first 0x100 bytes of read binary data and copies “mswsock.dll”
ANSI string inside it (starting at offset 0). Otherwise, it moves to next entry

NAMESPACE CATALOGS INFECTION
ModifyWinSockSubkey is called the second time with the following parameters:
"Current_NameSpace_Catalog” registry value name and Namespace Catalog parsing procedure.
As before, it first retrieves the name of current namespace catalog and opens the corresponding
“Parameters” sub-key (in our test system sub-key was named “NameSpace_Catalog5”). As usual it
retrieved the exact number of catalog entries and finally calls the namespace parsing procedure. For
every entry in the current namespace catalog it does the following:
1. Reads data of “Providerld” registry value and checks if data is binary type and its size is equal to
0x10 (size of a GUID). This value contains current namespace entry GUID.
2. Checks if read data equals to one the following GUIDs:
- Tcp/lp namespace provider GUID - {22059D40-7E9E-11CF-5AAE-00AAO0A7112B}

- NLA (Network Location Awareness) namespace provider GUID -
{6642243A-3BA8-4AA6-A5BA-2EO0BD71FDD83}

3. |If current entry GUID matches, Sirefef substitutes “LibraryPath” value data of current entry with
“mswsock.dll” string.
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Figure 10. Snap of windows Registry editor showing infected Winsock namespace catalogs

WHY MSWSOCK.DLL?

At this stage ZaModifyWinsock function ends and returns execution control to
CreateGaclniAndModifyWinsock. The reader is maybe wondering why Sirefef has done this strange
behavior... Indeed “mswsock.dll” is a clean Windows library, right?

Here we are seeing the last clever Sirefef trick: CreateAndMapFakeWSock function is the key. It extracts
and writes a fake “Winsock DII” (included uncompressed in Sirefef DIl file, stored in its “.rdata” section)
in “%systemroot%\assembly\GAC\desktop.ini” file (does the reader remember that original
“desktop.ini” file was deleted before, right?). It then creates a file section object named “mswsock.dll”
and places it in “KnowDlIs” object manager directory. As the reader already knows, this directory
includes memory sections of every system known library. Windows loader, with the help of this
directory, when maps a known DIl in a target process, it avoids reading its file from solid storage, and
saves a lot of time.

Windows loader, from now on, when is called to map original “mswsock.dll” library in a particular
process address space, will find a ready memory section object of that library, and maps that one
instead of the original one. This faked library has an export table containing every original “mswsock”
exported entry, all forwarded to the original library, except for “WSPStartup”. Sirefef WSPStartup
function implement entire faked dll logic.

Due to limited available time, | have not reversed entire faked “mswsock” library, but | know for sure
that this library acts as a filter and causes a lot of problems to all listening ports of a Server systems (like
Windows Server 2008 and 2012). We actually don’t know why, but If a curious reader would like to
investigate this fact, he can write me a mail (address andrea.allievi@saferbytes.it).

| have built a short video that highlights this problem on a Windows Server 2008 R2 system:
http://www.andrea-allievi.com/files/Sirefef 2013 Server Hell.avi

CONCLUSIONS

In this analysis, we have placed Sirefef under a microscope. We have seen that the people behind this
infection are very smart and have large knowledge of the Windows Operation systems internal
architecture.
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Due to limited resources and available time, | have not ended the entire reverse engineering and
program comprehension of this malware. If the reader is interested in it or if he has some questions or
opinions, just send me a message at my personal mailbox: info@andrea-allievi.com. Maybe if we have
many requests, | can continue this job on an eventual part 2.

Furthermore, | would like to thank my company, especially Marco Giuliani, for having sponsored this
work making the analysis possible, as well as KernelMode.info community, for providing me a lot of
useful information and fresh droppers. You are great, guys! ©
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